A GGA+U approach to effective electronic correlations in thiolate-ligated iron-oxo (IV) porphyrin.

نویسندگان

  • Justin E Elenewski
  • John C Hackett
چکیده

High-valent oxo-metal complexes exhibit correlated electronic behavior on dense, low-lying electronic state manifolds, presenting challenging systems for electronic structure methods. Among these species, the iron-oxo (IV) porphyrin denoted Compound I occupies a privileged position, serving a broad spectrum of catalytic roles. The most reactive members of this family bear a thiolate axial ligand, exhibiting high activity toward molecular oxygen activation and substrate oxidation. The default approach to such systems has entailed the use of hybrid density functionals or multi-configurational/multireference methods to treat electronic correlation. An alternative approach is presented based on the GGA+U approximation to density functional theory, in which a generalized gradient approximation (GGA) functional is supplemented with a localization correction to treat on-site correlation as inspired by the Hubbard model. The electronic structure of thiolate-ligated iron-oxo (IV) porphyrin and corresponding Coulomb repulsion U are determined both empirically and self-consistently, yielding spin-distributions, state level splittings, and electronic densities of states consistent with prior hybrid functional calculations. Comparison of this detailed electronic structure with model Hamiltonian calculations suggests that the localized 3d iron moments induce correlation in the surrounding electron gas, strengthening local moment formation. This behavior is analogous to strongly correlated electronic systems such as Mott insulators, in which the GGA+U scheme serves as an effective single-particle representation for the full, correlated many-body problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ab Initio Calculations of the Electronic Structure and Magnetism of Iron Porphyrin-Type Molecules: A Benchmarking Study

The iron porphyrin molecule is one of the most important biomolecules. In spite of its importance to life science, on a microscopic scale its electronic properties are not yet well-understood. In order to achieve such understanding we have performed an ab initio computational study of various molecular models for the iron porphyrin molecule. Our ab initio electronic structure calculations are b...

متن کامل

Stabilization of higher-valent states of iron porphyrin by hydroxide and methoxide ligands: electrochemical generation of iron(IV)-oxo porphyrins.

An electrochemical study of hydroxide- and methoxide-ligated iron(III) tetraphenylporphyrins possessing ortho-phenyl substituents that block mu-oxo dimer formation has been carried out. Ligation by these strongly basic oxyanions promotes the formation of iron(IV)-oxo porphyrins upon one-electron oxidation. Further one-electron oxidation of the latter provides the iron(IV)-oxo porphyrin pi-catio...

متن کامل

Electronic ground states of iron porphyrin and of the first species in the catalytic reaction cycle of cytochrome P450s.

Electronic structures of iron(II) and iron(III) porphyrins are studied with density functional theory (DFT) using the GGA exchange functional OPTX in combination with the correlation functional PBE (OPBE) and with the correlation functional Perdew (OPerdew) together with a triple zeta-type basis set. These functionals, known for accurately predicting the spin ground state of iron complexes, are...

متن کامل

A study of the mechanism and kinetics of cyclooctene epoxidation catalyzed by iron(III) tetrakispentafluorophenyl porphyrin.

A study has been conducted of the mechanism and kinetics of cyclooctene epoxidation by hydrogen peroxide catalyzed by iron(III) tetrakispentafluorophenyl [F(20)TPPFe(III)] porphyrin. The formation of cyclooctene oxide, the only product, was determined by gas chromatography, and the consumption of hydrogen peroxide was determined by (1)H NMR. UV-visible spectroscopy was used to identify the stat...

متن کامل

Steric and electronic control over the reactivity of a thiolate-ligated Fe(II) complex with dioxygen and superoxide: reversible mu-oxo dimer formation.

The reactivity between a thiolate-ligated five-coordinate complex [FeII(SMe2N4(tren))]+ (1) and dioxygen is examined in order to determine if O2 activation, resembling that of the metalloenzyme cytochrome P450, can be promoted even when O2 binds cis, as opposed to trans, to a thiolate. Previous work in our group showed that [FeII(SMe2N4(tren))]+ (1) reacts readily with superoxide (O2-) in the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 137 12  شماره 

صفحات  -

تاریخ انتشار 2012